Proposition 1. Let $f: A \to B$ be a function. Let $W, X \subset A$ and $Y, Z \subset B$. Then:

- (1) $f(W \cap X) \subset f(W) \cap f(X)$
- (2) $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- (3) $X \subset f^{-1}(f(X))$

Proof.

(1) Let $b \in f(W \cap X)$, then $\exists a \in W \cap X$ such that f(a) = b. Since $a \in W \cap X$, we know $a \in W$ and $a \in X$. Thus $f(a) = b \in f(W)$ and $f(a) = b \in f(X)$, thus $b \in f(W) \cap f(X)$.

 $\therefore f(W \cap X) \subset f(W) \cap f(X).$

To see that the reverse containment is not true, observe the following counter example: let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$, W = [-2, -1], and X = [1, 2]. Then $W \cap X = \emptyset$ so that $f(W \cap X) = \emptyset$. On the other hand, f(W) = [1, 4] and f(X) = [1, 4], so we see that $f(W) \cap f(X) = [1, 4]$. Therefore, we have

$$f(W) \cap f(X) = [1, 4] \not\subset f(W \cap X) = \varnothing,$$

giving us a counter example to containment in the other direction.

(2) Let $a \in f^{-1}(Y \cup Z)$. Then $f(a) \in Y \cup Z$. So $f(a) \in Y$ or $f(a) \in Z$. It follows that $a \in f^{-1}(Y)$ or $a \in f^{-1}(Z)$ which gives $a \in f^{-1}(Y) \cup f^{-1}(Z)$. $\therefore f^{-1}(Y \cup Z) \subset f^{-1}(Y) \cup f^{-1}(Z)$

Notice that all of the above steps are reversible, which will give us that

$$f^{-1}(Y) \cup f^{-1}(Z) \subset f^{-1}(Y \cup Z)$$

- $\therefore f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z).$
- (3) Let $x \in X$. Then $f(x) \in f(X)$. By definition of preimage, since $f(x) \in f(X)$, this means that $x \in f^{-1}(f(X))$. Therefore $X \subset f(f^{-1}(X))$.

To see that the containment does not go the other way, we can refer to the example from class. Here is another counterexample:

Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$ and let X = [0, 1]. Then f(X) = [0, 1] and $f^{-1}([0, 1]) = [-1, 1]$, which shows that $f^{-1}(f(X)) \not\subset X$ in general.